
00 , 00 0
OF , 00 15
00 , OF 0
OF , OF 15
FO , 00 240
FF , 00 255
FO , OF 240
FF , OF 255
00 , FO 0
OF , FO 15
00 , FF 0
OF , FF 15
FO , FO 240
FF , FO 255
FO , FF 240
FF , FF 255

9 0

9 0

9 15

9 15

1

9

9 15
, 15
,240
,240
,255
,255
,240
,240
,255
,255

Towards a VZ-Epson printer
patch
Larry Taylor

Fed up with your clackerty old printer and long for an upgrade to
one of the popular Epson or Epson-type dot matrix printers?
Compatibility with the VZ has always been a problem - until now.

Part 1

FED UP with your clackerty GP-100, and its less than per-
fect print quality? Do you long to upgrade, but know that
whatever you choose, it won't be totally friendly towards your
VZ?

Are you the owner of an Epson-type printer, but suffer frus-
tration, as I did, at its lack of compatability? If so, then take
heart, there is hope. The answer is a printer patch, that is,
a program specifically written to take the place of the exist-
ing ROM routines. In this case, the aim is to make the VZ
fully compatible with Epson-type printers. Recently, after-
many hours spent reading and experimenting, I succeeded
in producing just such a program.

Having first decided to take the plunge and purchase a VZ
computer, I developed a very great need, some short time
later, to be able to obtain a printout of my programming ef-
forts. On close examination of available finances, I was left
with a choice between the Seikosha GP-100, a slow, noisy
machine featuring an unattractive print style, and the BMC
BX-80, a noticeably quieter, faster printer, possessing sever-
al attractive fonts.

Although a seemingly easy decision, I was immediately
faced with a dilemma. The former, whilst initially unattrac-
tive, especially so to anyone with sensitive hearing, had two
very desirable features: namely, the ability to print the VZ's
inverse and graphics characters, in addition to providing,
via the COPY command, a dump of the HI-RES screen. These
two factors very nearly persuaded me to choose the GP-100,
but, after much deliberation, I opted for the superior print
quality of the BX-80. In so doing, I resigned myself to hav-
ing to go without the former's obvious advantages.

No one had at this stage even remotely hinted that I could
have the best of both worlds by means of a software patch.
Hindered by a lack of information and minimal understand-
ing of computer and printer operations, I perservered with
the rather primitive approach of removing all inverse and
graphics characters from programs before doing a printout.

A start
Desperate to overcome this huge waste of time, I first began
to deal with the problem of printing graphics characters. I
realised that my printer was capable of dot graphics and that
it should be able, whilst in this mode, to reproduce the shapes
I desired. My early efforts, however, ended in frustration as
the VZ steadfastly refused to interpret my data correctly. Only
when I discovered that I could send the data directly out the
ports, thus bypassing the VZ's printer driver routine, did I
achieve any success.

Listing 1 gives an example of how this was accomplished.
By referring to the table below, you may change the graph-
ics block data in the listing to enable any of the other graph-
ics charactrs to be printed. Later it will become clearer how
the data to print each block was calculated.

86 — Australian Electronics Monthly a-- May 1987

-GFRAF)F-1 I C E3L-C3Gi< iDATA

HEX I DEC I MAL DECIMAL

Being an avid user of Steve Olney's Extended Basic, I used
my new-found knowledge to write an assembly routine,
which linked into the listing routine of his program. It sim-
ply checked for graphics and inverse characters. Graphics
characters were printed and inverse ones changed to non-
inverse. Useful, but not totally satisfactory. On the way I had
independently developed my own table of data (above), to
print the graphics blocks, only to later discover that there
exists in the VZ's ROM a set of data for graphics characters
and another for inverse.

The graphics table occupies addresses from 02AFH to
02CEH, whilst the inverse data commences at 3B94H and
ends at 3CD3H. The graphics shapes are stored in two-byte
form and the inverse characters in five-byte blocks. Their ex-
istence makes it a simple enough matter to expand on the
program in Listing 1 and print the graphics blocks using the
ROM data instead of our own, as in Listing 2. The same may
be done with the inverse characters and Listing 3 shows how
this is accomplished. Unfortunately, you will notice that the
resultant characters, when printed, are in fact upside down.
To understand why this occurs, it is necessary to offer a brief
explanation of the differences between the code values used
to control firing of the pins in the printheads of Epson-type
printers, and those of the GP-100 family.

128
129
130
131
132

133
134
135
136
137
138
139
140
141
142
143

EPSON

128
64
32
16

4
2
1

The Epson-type printer
Printers of the Epson-type have eight addressable pins, while
the GP-100 has the equivalent of seven pins only. In addi-
tion, the value 1, which fires the bottom pin on an Epson
printer, actually triggers the top pin on the GP-100. The dia-
gram below illustrates the differences.

COMPAFRIBON1 OF"
F>IN CODE VAL...I...Jae

GP-100

1
2
4

16
32
64

To calculate the code which is required to produce a par-
ticular dot pattern we simply have to add up the values of
the corresponding pins. The representation of the graphics
block, CHR$(137), can be used to demonstrate how this is
done. You may recall that the data values used in Listing 1
to reproduce this particular character were 240 and 15. No-
tice how these codes correspond to the totals at the base of
each column in the diagram. If we examine the first column
on the left, we can see that only the top four pins have been
fired. By totalling vertically the values assigned to those pins,
we arrive at the sum of 240. The same procedure is used to
determine the Epson compatible code for each of the remain-
ing columns.

GIRANF>I-1 I CB 01,..._C3CK 1 37
128 MOM IMMO no moo
64 11111111 NM ISM
32 MPS MI INNS
16 Ma MIN NM MI

	

8 	 MIN NM Nal MIN
4 MO MI MN
2 MIMS NNW IMMO.

	

1 	 OM MI MI MIMI
240 240 240 240 15 15 15 15

It can be done
Nevertheless, data which has been prepared primarily for
the GP-100, as is the case with the ROM tables, will produce
inverted images if sent to an Epson printer. It is necessary,
threfore, to convert the data before it can be used. Adding
Listing 4 to Listing 3 will produce the desired result. I
wouldn't however, advise any of you to hold your breath
whilst waiting for the data to be printed. Hence, I have
provided Listing 5, an assembler program, which effects the
same result, only much more swiftly.

Having now managed to make the characters appear in
their more conventional form, a closer examination of them
will reveal numerous inaccuracies. Some, such as the 3 and

5, are more noticeable than others, but no less than a dozen
of the characters are flawed. After progressing so far, this
is a disappointing development but one which will prove,
later, to be not insurmountable. In the interim, we need to
explore further how we might utilise our somewhat imper-
fect data.

Fortunately, the designers of the ROM foresaw the possi-
bility that potential users may want to use a different printer.
As a result, a vector has been used to point to the location
of the printer driver. All output to the printer is directed via
a driver routine, which, among other things, checks for con-
trol codes and keeps track of line feeds. In the VZ, a block
of the communications area of RAM from 7825H to 782CH
has been set aside for printer operations, allowing temporary
storage of values such as the number of lines printed. Of
greatest interest to us is the contents of 7826H-7827H. This
is the start of the driver routine, and the cause of our
problems, because it is geared to expect that owners of VZeds
will be using GP-100 type printers. However, since the previ-
ous address lies in RAM, it is possible to insert a pointer to
our own driver routine at this location. Once accomplished,
all future LPRINT and LLIST commands will be directed,
ultimately, to our own printer routine.

We have now proceeded part way to installing a valuable
routine for owners of Epson-type printers, but we are still
unable to make use of the COPY command. The primary ad-
vantage of which is that it allows a dump of the HI-RES
screen to be made to the printer. Implementing this very
desirable feature will prove to be somewhat more
challenging.

LISTING 1 : PRINT A SINGLE GRAPHICS BLOCK

100 REM ####################################
101 REM # PUT PRINTER IN GRAPHICS MODE
102 REM ####################################
110 LPRINTCHR$(27);CHR$(75);
120 FOR T=1 TO 2
130 	READ D:GOSUB 510
140 NEXT T
200 REM ####################################
205 REM # READ EACH DATA VALUE IN TURN
210 REM # AND THEN PRINT IT FOUR TIMES
215 REM ####################################
220 FOR N%=1 TO 2
230 READ D
240 GOSUB 510:GOSUB 510
250 GOSUB 510:GOSUB 510
400 NEXT N%
410 LPRINT:END
500 REM ####################################
501 REM # OUTPUT TO PRINTER VIA THE PORTS #
502 REM ####################################
510 IF INP(0)<>254 THEN .GOT0510
520 OUT 13,D:OUT 14,D
530 RETURN
540 REM ####################################
545 REM # NUMBER OF BYTES TO BE PRINTED
550 REM # IN LOW BYTE, HIGH BYTE FORM
555 REM ####################################

560 DATA 8,0
565 REM #############4###############*######
570 REM # GRAPHIC BLOCK DATA
575 REM ####################################
580 DATA 240,15 	•

LISTING 2 : PRINT THE ROM GRAPHICS BLOCKS

100 REM ####################################
101 REM # PUT PRINTER IN GRAPHICS MODE
102 REM ####################################
110 LPRINTCHR$(27);CHR$(75);
120 FOR T=1 TO 2
130 READ D:GOSUB 510
140 NEXT T
150 REM ####################################
151 REM # LOCATION GRAPHICS TABLE 02CEH
152 REM ####################################

May 1987 — Australian Electronics Monthly — 87

160 M=687
200 REM ####################################
205 REM # READ DATA FOR GRAPHICS BLOCKS

	

210 	REM # AND PRINT EACH VALUE 4 TIMES 	#
215 REM ####################################
220 FOR N%=1 TO 32

	

230 	D=PEEK(M)-128 :M=M+1
240 GOSUB 510:GOSUB 510
250 GOSUB 510:GOSUB 510
260 REM ####################################
265 REM # THIS LINE SEPARATES CHARACTERS #
270 REM # FROM EACH OTHER BY A DOT WIDTH #
275 REM ####################################
280 IF N%/2 = INT(N%/2) THEN D=0 :GOSUB 510
400 NEXT NY.
410 LPRINT:END
500 REM ####################################
501 REM # OUTPUT TO PRINTER VIA PORTS
502 REM ####################################
510 IF INP(0)<>254 THEN GOT0510
520 OUT 13,D:OUT 14,D
530 RETURN
540 REM ####################################
545 REM # NUMBER OF BYTES TO BE PRINTED
550 REM # IN LOW BYTE, HIGH BYTE FORM
555 REM ####################################
560 DATA 144,0

LISTING 3 : PRINT THE ROM INVERSE CHARACTERS

100 REM ####################################
101 REM # PUT PRINTER IN GRAPHICS MODE
102 REM ####################################
110 LPRINTCHR$(27);CHR$(75);
120 FOR T=1 TO 2

	

130 	READ D:GOSUB 510
140 NEXT T

150 REM ####################################

151 REM # LOCATION OF INVERSE TABLE 3B94H #
152 REM ####################################
160 M=15252
200 REM ####################################
201 REM # NUMBER OF INVERSE CHARACTERS
202 REM ####################################
210 FOR N%=1 TO 64

	

220 	D=255:GOSUB 510
230 REM ####################################
231 REM # NUMBER OF BYTES PER CHARACTER
232 REM ####################################
240 FOR R%=1 TO 5

	

250 	D=PEEK(M):M=M+1
339 REM ####################################
340 REM # PRINT ONE COLUMN
341 REM ####################################

	

350 	GOSUB 510
360 NEXT

	

370 	D=255:GOSUB 510
400 NEXT NY.
410 LPRINT:END
500 REM ####################################
501 REM # OUTPUT TO PRINTER VIA THE PORTS #
502 REM ####################################
510 IF INP(0)<>254 THEN GOT0510
520 OUT 13,D:OUT 14,D
530 RETURN
535 REM ####################################
540 REM # NUMBER OF BYTES TO BE PRINTED
550 REM # IN LOW BYTE, HIGH BYTE FORM
555 REM ####################################
560 DATA 192,1

LISTING 4 : CONVERT THE DATA FOR THE EPSON PRINTER

260 REM ####################################
261 REM # CHANGE CODE FROM GP-100 TO EPSON #
262 REM ####################################

	

270 	IF D=189 OR D=255 THEN 320

	

280 	V=0:E=0

	

290 	FOR FY.=7 TO 0 STEP -1

	

300 	P=2^F%:IF D<P THEN 320

	

310 	E=E+2^V:D=D-P

	

320 	V=V+1

	

330 	NEXT:D=E

LISTING 5 : PRINT THE ROM INVERSE CHARACTERS

0001 ;####################
0002 ;# PUT PRINTER IN #
0003 ;# GRAPHICS MODE #
0004 ####################
0005 LD A,27
0006
	

CALL 3ABAH
0007 LD A,75
0008
	

CALL 3ABAH
0009 LD A,192
0010
	

CALL 3ABAH
0011 LD A,1
0012
	

CALL 3ABAH
0013 ;####################
0014 ;# LOCATION OF THE #
0015 ;# INVERSE TABLE 	#
0016 ####################
0017 LD HL,3894H
0018 ####################
0019 ;# NUMBER OF INVERSE#
0020 ;# 	CHARACTERS
0021 ####################
0022 LD B,64
0023 NEXT PUSH BC
0024 LD A,255
0025
	

CALL 3ABAH
0026 ;####################
0027 ;# NUMBER OF BYTES #
0028 ;# PER CHARACTER #
0029 ;####################
0030 LD B,5
0031 PRNT LD 	A,(HL)
0032
	

CALL CVRT
0033
	

CALL 3ABAH
0034
	

INC HL
0035
	

DJNZ PRNT
0036 LD A,255
0037
	

CALL 3ABAH
0038
	

POP BC
0039
	

DJNZ NEXT
0040
	

RET
0041 ;####################
0042 ;# CHANGE CODE FROM #
0043 ;# GP-100 TO EPSON #
0044 ;####################
0045 CVRT PUSH BC
0046 LD B,8
0047 ROTA RR A
0048 RL C
0049
	

DJNZ ROTA
0050 LD A,C
0051
	

POP BC
0052
	

RET

— from page 30
chromium to resist corrosion) and a solid "beta alumina"
electrolyte separates anode and cathode. The cell is sealed
and filled with argon.

During discharge, sodium ions pass through the electrolyte
from anode to cathode, forming sodium sulphide at the
cathode, the reaction generating the current. Recharging is
achieved as with other storage batteries, by passing a current
through it in reverse. One problem, though. These cells will
only deliver power when operated above 270 degrees Celsius.
They have an operating temperature ceiling of 410 degrees C.
They must be heated to 'start up' and to maintain them within
the operating temperature range, they have to be fully charged
and then at least 80% discharged each day. If unused for nine
hours, temperature falls below the 270 degrees C.

Sodium-sulphur cells exhibit a terminal voltage of around
2 V and may last some five years or 6000 charge-discharge
cycles, which betters the typical lead-acid battery life cycle.
In addition, its terminal voltage remains constant until it
reaches about 70% of its discharge capacity before tapering
off.

Suggested application encompass commercial vehicles
such as delivery vans and buses, and military submarines.
Satellite applications are also suggested as sodium-sulphur
cells are only 20% of the weight of equivalent NiCad batteries
of the same Ah output.

88 — Australian Electronics Monthly — May 1987

	Page 1
	Page 2
	Page 3

